Central limit theorem: the cornerstone of modern statistics
نویسندگان
چکیده
According to the central limit theorem, the means of a random sample of size, n, from a population with mean, µ, and variance, σ2, distribute normally with mean, µ, and variance, [Formula: see text]. Using the central limit theorem, a variety of parametric tests have been developed under assumptions about the parameters that determine the population probability distribution. Compared to non-parametric tests, which do not require any assumptions about the population probability distribution, parametric tests produce more accurate and precise estimates with higher statistical powers. However, many medical researchers use parametric tests to present their data without knowledge of the contribution of the central limit theorem to the development of such tests. Thus, this review presents the basic concepts of the central limit theorem and its role in binomial distributions and the Student's t-test, and provides an example of the sampling distributions of small populations. A proof of the central limit theorem is also described with the mathematical concepts required for its near-complete understanding.
منابع مشابه
The Local Limit Theorem: A Historical Perspective
The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...
متن کاملCentral Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملDensity Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملA central limit theorem for triangular arrays of weakly dependent random variables
We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi (1999). The proof uses an apparently new variant of the Lindeberg method where the behavior of the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also discuss a few applicati...
متن کامل